Misumi Tap Cutting Speed and Cutting Oils Cutting speed is affected by use conditions including tap material, type, bite thread count, pilot hole shape, work material, cutting oil and so on, requiring careful selection. As well, cutting oil effects include lubrication, cooling, and anti-deposition, which are called the three elements of cutting oils. For tapping, because of the highly complex cutting effects, we recommend being sure to use sufficient cutting oil. ## ■ Standard cutting speed and compatible cutting oils | Work Material | | Cutting Speed (m/min) | | | | | | Cutting Oil | | | | |--|------------------------------------|-----------------------|---------|---------|---------|--------------|---------|--------------|---------------------------|-------------|-------------| | | | High-Speed Steel | | | | | | Water | Water | Semi- | | | | | Hand | Spiral | Point | Roll | For
Tubes | Carbide | Insolubility | Solubility
(immersion) | Dry | Dry | | Low-Carbon Steel | CO.25% or less | 8 ~ 13 | 8 ~ 13 | 15 ~ 25 | 8 ~ 13 | 3 ~ 6 | - | 0 | 0 | \triangle | \triangle | | Medium Carbon
Steel | CO.25 ~
0.45% | 7 ~ 12 | 7 ~ 12 | 10 ~ 15 | 7 ~ 10 | 3 ~ 6 | - | 0 | 0 | Δ | Δ | | High-Carbon Steel | CO.45% or more | 6~ 9 | 6 ~ 9 | 8 ~ 13 | 5 ~ 8 | 2 ~ 5 | - | 0 | 0 | Δ | Δ | | Alloy Steel | SCM | 7 ~ 12 | 7 ~ 12 | 10 ~ 15 | 5 ~ 8 | 2 ~ 5 | - | 0 | \triangle | Δ | Δ | | Heat-Treated Steel | 25 ~ 45HRC | 3 ~ 5 | 3 ~ 5 | 4 ~ 6 | - | 2 ~ 5 | - | 0 | \triangle | - | - | | Stainless Steel | sus | 4 ~ 7 | 5 ~ 8 | 8 ~ 13 | 5 ~ 10 | 3 ~ 6 | - | 0 | 0 | - | - | | Precipitation-hardened Stainless Steel | SUS630
SUS631 | 3 ~ 5 | 3 ~ 5 | 4 ~ 6 | - | 2 ~ 5 | - | 0 | - | - | - | | Tool Steel | SKD | 6 ~ 9 | 6 ~ 9 | 7 ~ 10 | - | 2 ~ 5 | - | 0 | - | - | - | | Cast Steel | sc | 6 ~ 11 | 6 ~ 11 | 10 ~ 15 | - | 2 ~ 5 | - | 0 | 0 | - | - | | Cast Iron | FC | 10 ~ 15 | - | - | - | 2 ~ 5 | 15 ~ 25 | 0 | 0 | 0 | 0 | | Ductile Cast Iron | FCD | 7 ~ 12 | 7 ~ 12 | 10 ~ 20 | - | 4 ~ 8 | 12 ~ 20 | 0 | 0 | 0 | - | | Copper | Cu | 6 ~ 9 | 6 ~ 11 | 7 ~ 12 | 7 ~ 12 | 2 ~ 5 | 15 ~ 33 | 0 | 0 | - | - | | Brass/Brass Casting | Bs/BsC | 10 ~ 15 | 10 ~ 20 | 15 ~ 25 | 7 ~ 12 | 5 ~ 10 | 23 ~ 33 | 0 | 0 | 0 | 0 | | Bronze/Brass
Casting | PB/PBC | 6 ~ 11 | 6 ~ 11 | 10 ~ 20 | 7 ~ 12 | 6 ~ 11 | 18 ~ 33 | 0 | 0 | - | - | | Aluminum Rolled
Material | Al | 10 ~ 20 | 10 ~ 20 | 15 ~ 25 | 10 ~ 20 | 5 ~ 10 | 23 ~ 40 | 0 | 0 | \triangle | - | | Aluminum Alloy
Casting | AC/ADC | 10 ~ 15 | 10 ~ 15 | 15 ~ 20 | 10 ~ 15 | 10 ~ 15 | 15 ~ 25 | 0 | 0 | Δ | - | | Cast Magnesium
Alloy | МС | 7 ~ 12 | 7 ~ 12 | 10 ~ 15 | - | 10 ~ 15 | 12 ~ 20 | 0 | 0 | 0 | - | | Zinc Alloy Casting | ZDC | 7 ~ 12 | 7 ~ 12 | 10 ~ 15 | 7 ~ 12 | 10 ~ 15 | 12 ~ 20 | 0 | 0 | \triangle | - | | Thermosetting plastic | Bakelite
Phenol
Epoxy | 10 ~ 20 | - | - | - | 5 ~ 10 | 15 ~ 25 | - | 0 | 0 | 0 | | Thermoplastic | Vinyl Chloride
Nylon
Duramin | 10 ~ 20 | 10 ~ 15 | 10 ~ 20 | - | 5 ~ 10 | 15 ~ 25 | - | 0 | 0 | 0 | This table is for general selection reference and may require changes according to use conditions. $[\]bigcirc$ Optimal \bigcirc Suitable \triangle Usable - Unusable